
Students’ Behavioral Intention to Use Gradual
Programming Language Hedy: A Technology

Acceptance Model
Sabiha Yeni

Leiden University, LIACS
The Netherlands

s.yeni@liacs.leidenuniv.nl

Anna van der Meulen
Leiden University, LIACS

The Netherlands
a.n.van.der.meulen@liacs.leidenuniv.nl

Abstract
Programming is generally considered a cognitively challeng-
ing subject by beginners because it involves acquiring com-
plex new knowledge, strategies, and practical skills. Effec-
tive instructional strategies and programming platforms are
important in providing the student with optimal learner
support. As a new approach, the first gradual programming
language Hedy was launched to overcome issues with syntax
and cognitive overload when learning to program by teach-
ing syntax and semantic knowledge in steps, rather than at
once. In this paper, we aim to investigate students’ accep-
tance of Hedy, by analyzing their behavioral intentions from
the theoretical background of the Technology Acceptance
Model (TAM). We conducted a qualitative case study combin-
ing a survey and group interviews to capture the dimensions
of TAM. 18 students between the ages of 10 and 12 attended
four days of summer camp on Hedy during which data were
gathered. The results indicate that several of the participants
have a positive attitude towards Hedy, and their experience
of “not too difficult but real programming” appears in line
with the intention of the gradual programming language.
However, some other children found Hedy too limited and
restricted or expressed a desire for a different type of output.
Overall, learners’ experience appeared embedded in their
previous programming experience as well as expectation
beforehand of Hedy and of programming in general. Finally,
a trend could be seen where learners from under-resourced
communities (about half of the participants) overall were
less positive about their experience and behavioral intention.

CCS Concepts: • Applied computing→ Education; • So-
cial and professional topics→K-12 education;Computer
science education.

Keywords: gradual programming language, Hedy, the tech-
nology acceptance model

This work is licensed under a Creative Com-
mons Attribution-NonCommercial-NoDerivs
International 4.0 License.

ITiCSE 2022, July 8–13, 2022, Dublin, Ireland.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9201-3/22/07. . . $15.00
https://doi.org/10.1145/3502718.3524782

ACM Reference Format:
Sabiha Yeni and Anna van der Meulen. 2022. Students’ Behavioral
Intention to Use Gradual Programming Language Hedy: A Technol-
ogy Acceptance Model. In Proceedings of the 27th ACM Conference
on Innovation and Technology in Computer Science Education Vol. 1
(ITiCSE 2022), July 8–13, 2022, Dublin, Ireland. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3502718.3524782

1 Introduction
In recent years, the demand for programming education and
student interest in programming have grown rapidly, and
introductory programming courses have gained increasing
popularity. However, programming courses are generally
regarded as difficult, and computer science programs have
dropout rates up to 40% [3], which is high compared to other
programs traditionally considered difficult such as physics.
This high dropout rate has been attributed to existing instruc-
tional strategies [3] and unrealistic expectations [23]. This
might be due to the fact that learning to program involves
acquiring complex new knowledge, strategies and practical
skills [33]. Regarding the practical skills of programming,
literature has identified problems with understanding and
mastering the programming syntax and functions, apply-
ing correct syntax rules, using semantic knowledge to write
programs and ineffective design and testing solutions [17].

To address issues with syntax when learning to program,
the idea of a gradual programming language was recently
coined. A gradual language teaches syntax in steps, rather
than at once [14]. As is common in both mathematics and
natural language teaching, learners using a gradual language
initially learn incomplete and partly incorrect models, which
are refined step by step. The programming language Hedy is
an implementation of this concept. Hedy is an open-source
programming language that runs in the browser and is avail-
able for free. Previous research on Hedy has manually exam-
ined almost 10.000 Hedy programs to gain an understanding
of how novices learn Hedy [14], and have analyzed users’
feedback to understand benefits and challenges [10]. In our
empirical study, we focus on students’ acceptance of a grad-
ual programming language, by analyzing their behavioral
intentions towards the use of Hedy. We also look explicitly
at the role of students’ socioeconomic background (SES) by

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3502718.3524782
https://doi.org/10.1145/3502718.3524782

ITiCSE 2022, July 8–13, 2022, Dublin, Ireland. Yeni and van der Meulen

involving a group of learners from under-resourced commu-
nities. Our research question is: What are the behavioral
intentions of students toward the use of gradual pro-
gramming language, and are there different patterns
for students from under-resourced communities?

2 Background
2.1 Cognitive Load and Syntax Issues
Programming demands complex cognitive skills such as pro-
cedural, conditional and analogical reasoning, and planning
[20]. Lister argued that cognitive overload can occur in stu-
dents while programming because of simultaneous teaching
of programming concepts, syntax and problem solving [22].
A worldwide study in 250.000 novice programmers identified
mismatched brackets and quotations as the most common
error category in writing syntax, a fundamental part of pro-
gramming [1]. It has been suggested that learning the style
and structure of programs are preceded by learning the syn-
tax [26]. Once students have internalized syntax, they should
be able to ignore the details of the syntax during program
design and construction, allowing them to direct attention
to more relevant parts of the program [32].

Because of the cognitively challenging nature of program-
ming, good instructional strategies are important to provide
the student with optimal learner support. Mason et. al [25]
documented that some of the programming environments
may be complex and cause an adverse impact on learners’
focus of attention and overloading cognitive resources for
learning [25]. Consequently, the idea of designing easy-to-
use programming platforms may be taken into consideration
[28]. A gradual programming language [14] [10] forms a
new approach in simplifying programming for novices. It
presents a new way of teaching the increasingly complex
syntax of programming language, based on how punctuation
is taught to novice readers in natural language education.
The syntax rules are introduced slowly and gradually while
students learn to write their first natural language.

2.2 Gradual Programming Language: Hedy
Hedy is the first implementation of gradual programming.
The user interface of Hedy is shown in Figure 1. On the left
is an editor for entering code, and on the right is a field for
output. Each level also includes buttons that allow you to
practice the instructions you’ve learned thus far. Hedy intro-
duces syntax and programming concepts in an incrementally
increasing manner with the levels.
In addition to the gradual approach, Hedy has other fea-

tures that make learning programming easier. The first is the
palette of available commands. The user interface contains
an overview of the commands available in a level, integrated
into the editor, as shown in Figure 1. This saves the users
the cognitive effort of looking up commands. Each of the
commands has a “Try this" button, which will place a code

snippet containing that command in the editor. Second, there
are the built-in instructions and exercises for each level. An
integrated tutorial is enabled by the gradual programming
paradigm since the small size of each level contributes to
brief explanations in a clear order.

Finally, we give a brief overview of the first eight levels of
Hedy taught in this study (more detailed descriptions of all
18 levels can be found in previous papers [14] [10]). At level 1,
students can print text with no other syntactic elements than
the keyword [print] followed by arbitrary text (Figure 1). In
the next consecutive levels, students add variables (using the
word [is] rather than the equals symbol) (level 2) and create
lists and retrieve elements (level 3). Next, at level 4 the first
syntactic element is introduced: the use of quotationmarks to
distinguish between variables and “plain text", and selection
with the [if] statement is introduced (level 5). Students
learn to calculate when addition, multiplication, subtraction
and division are introduced in level 6, and in level 7 repetition
with a simple syntactic construction is introduced. Finally, in
level 8, learners will see a more Python-like form of the loop,
namely: [for i in range 0 to 5]. (In the most recent
version of Hedy, “for” syntax is introduced in Level 10).

Figure 1. Level 1 of the Hedy user interface in English

2.3 The Technology Acceptance Model
The technology acceptance model (TAM) [7] [8] is one of
the most widely used theoretical models to understand and
predict user acceptance of technology (Figure 2) [40] [6] [15]
[18]. TAM is predictive in nature and aims to find the factors
that influence people’s intentions to use technology.
TAM comprises core variables of user motivation: per-

ceived ease of use (PEU), perceived usefulness (PU) and atti-
tudes toward technology, as well as outcome variables: be-
havioral intention and technology use [24]. PEU is a degree

Hedy: A Technology Acceptance Model ITiCSE 2022, July 8–13, 2022, Dublin, Ireland.

of ease of using particular technology and learning without
additional effort [8]. If people think that new technology is
easy to use, their behavioral intention towards using tech-
nology becomes positive. PU refers to a positive or negative
idea on performance increase in users’ jobs as emerged after
using technology [8]. Further, behavioral intention (BI) can
be explained as people’s presence to act a specified behav-
ior. TAM states that behavioral intention of people is the
primary factor that determines people’s actual use [16, 36].
The purpose of this study to apply the original TAM model
[8] as a baseline model to examine the students’ acceptance
of a gradual programming language.

Figure 2. Technology acceptance model [8]. (External vari-
ables in this study are classified into individual factors: prior
experience and programming self-efficacy)

2.4 The Role of Socio-Economic Status in Computing
Regarding the attitude towards technology use and comput-
ing, socioeconomic status (SES) is known to be an important
factor [29]. Generally, students with lower SES can be im-
pacted by less concrete access to technology and computers
as well as several other social factors that decrease their fa-
miliarity and proficiency in this area [11]. Consequently, in
the context of understanding and improving young learners’
behavioral intention towards programming it is important
to pay attention to this group.
Because a core element of the gradual programming ap-

proach is the aim to simplify programming for novice learn-
ers, TAM is a very suited approach to explore how this affects
students’ perceived ease of use, user motivation and overall
attitude. In this study, the gradual programming language
Hedy was introduced to upper primary school students (in-
cluding students from under-resourced communities) via a
four-day summer camp. Then, we used TAM to evaluate the
behavioral intentions of students toward the use of Hedy.

3 Methodology
This study employed a qualitative case study approach [34]
to explore students’ behavioral intention toward the use of
a gradual programming language. Within this approach, the
language Hedy is our specific unit of interest [30].

3.1 Participants
In total, 18 students between 10-12 years old (average age
11) participated in the study. The participants were three

girls and 15 boys from 9 different schools in the Nether-
lands. Eight students were considered to come from under-
resourced communities, based on their eligibility to enter the
camp through a free ticket, as enabled through their schools
(referred to below as group with “low-SES"). In providing
their demographics, students also indicated their previous
programming experience. Eight students took a program-
ming course before, only one participated in a course longer
than one month. Six students did not take a course but tried
to learn programming by themselves, and three students did
not take a course or try to learn themselves (one student
did not fill out the question). We also asked students how
comfortable they feel when they are programming. Seven
students stated that they feel as programming profession-
als, five students feel comfortable while programming, five
students need a little help and one student a lot of help.

3.2 Hedy Lessons
The study took place within the context of a summer camp
on Hedy, conducted at Leiden University. All participants
of the summer camp also took part in the study. The camp
lasted four days, between 9 am and 4 pm, covering the first
8 levels of Hedy. Each day of lessons had a similar setup.
First, the teacher gave instructions by explaining the basic
concepts of a level. Next, the students could pick their pref-
erence for an assignment out of several provided options.
The students were allowed to work independently but were
encouraged to show their programs to other students at the
end of each level. Questions could be asked when needed.
During the camp days several other CS unplugged activities
and games related to programming were conducted with the
participants, including “Play a robot”, code-card games and
board games about programming. Further, Hedy lessons and
programming activities were interchanged through the day
with breaks where the students could play computer games
or have free time outside.
The camp was guided by a researcher and a certified pri-

mary school teacher with experience in teaching program-
ming and Hedy, who were assisted by three bachelor’s and
master’s computer science students. The authors of this study
were independent observers and not part of the camp team.

3.3 Data Collection
The data were gathered using a demographic survey, Tech-
nology of Acceptance (TAM) model survey and group inter-
views. The demographic survey was completed at the start
of the camp, and included questions on age, gender, grade,
programming experience and self-efficacy. The topics of the
survey and group interview were closely aligned, with the
purpose to obtain a broad, quantitative overview through
the survey complemented with in-depth experiences and
opinions obtained through the group interviews. We choose
group interviews since for younger participants this is a
more natural and comfortable situation to share.

ITiCSE 2022, July 8–13, 2022, Dublin, Ireland. Yeni and van der Meulen

The TAM survey included 22 questions and was adapted
from an existing survey [21] (based on the original TAM
model [7]) to fit the purpose of our study. Previously [21],
survey reliability and validity as assessed via confirmatory
factor analysis were both found acceptable [9]. Our adapted
version of the survey included questions on prior experience,
self-efficacy, attitude towards Hedy and camp experience,
perceived ease of use, perceived usefulness and behavioral
intention (survey available upon request). The “Degree of
happiness scale", a version a 5 point Likert scale suited for
children, was used to indicate the level of agreement, ranging
from (5) Strongly agree to (1) Neutral, (in line with young
users tendency to rate relatively positively) with icons of
smiley’s to illustrate the ratings [12]. The group interviews
were conducted following the end of lessons on the fourth
day. All interviews were audio recorded. We conducted five
interviews. Group 1 to 4 had four participants and group
5 had two participants. Division of low-SES students was
as follows: group 1, 2, and 3 had two out of four students
with low-SES, in group 4 there were no low-SES students
and in group 5 both students had low-SES. The interview
followed a semi-structured interview protocol that included
six subgroups to capture students’ intention towards Hedy:
prior experience, self-efficacy, attitude towards Hedy
and camp, perceived ease of use, perceived usefulness,
behavioral intention.

3.4 Data Analyses
The survey data were analyzed using the Statistical Package
for the Social Sciences (SPSS), version 27. Sum and average
scores as well as mean, SD, range, and internal consistency
(Cronbach’s alpha) were calculated for each subgroup. The
role of low-SES was explored through a comparison for each
subgroup between low-SES and other children.
The group interviews were transcribed using a standard

verbatim approach, noting also behaviors such as laugh-
ter or sighing. Pseudonyms (Child1 etc.) were used in the
transcript, and personal pronouns have been converted to a
singular gender-neutral pronoun (they/them/their). Next, a
theory driven thematic data analysis approach was used [5].
The themes were in line with subgroups of the TAM survey:
behavioral intention, perceived ease of use, perceived useful-
ness, external variables (self-efficacy and prior experience)
and attitude. In the final step, the quantitative and qualitative
data were taken together per subgroups, as described below
in the results. Quotes from the interviews were added to
illustrate certain points where applicable.

4 Results
4.1 Prior experience with programming in general
The survey inquired with two questions about students’ prior
experience with programming, asking whether they pre-
viously enjoyed and felt comfortable while programming.

Scores received on this subgroup of the survey ranged from
1 to 5, with an average score of M = 3.72 (SD = 1.27). No dif-
ferences between the low-SES (M = 3.75, SD = 1.51) andother
children (M = 3.70, SD = 1.13) was observed.

During the interview, the students talked about program-
ming tools or languages they previously used. In several
groups all children indicate to have prior programming expe-
rience (groups 1, 4, and 5), mentioning for instance Scratch,
Micro:bit, and Cospaces [https://cospaces.io/]. The children
were not very specific about their experience which appears
sometimes limited. Often the children directly make compar-
isons to Hedy, which are incorporated in the next section.

4.2 Programming Self-Efficacy
Three items formed the subgroup "self-efficacy" about pro-
gramming and Hedy. Scores ranged from 1 to 4.67, M = 3.09,
SD = 1.17. Internal consistency was good, 𝛼 = .80. Low-SES
learners scored lower (M = 2.54, SD = 1.22) compared to the
other learners (M = 3.53, SD = .97).
In the interviews the children rated themselves between

4 and 8 (on a scale of 10) in terms of how skilled program-
mers they are. In two groups (2 and 3) the amount of help
from the teachers needed is mentioned as an indication of
being not so skilled yet, as well as (in group 2) that it is diffi-
cult when something new arises. Child 1 in group 5 is most
clearly negative, indicating they “understand nothing from
computers". Further, it is discussed what happens when the
children encounter a mistake. The most common indicated
strategy is to ask for help, but more than half of children also
mention either to first try themselves (carefully checking
the code, starting over again, taking a break from it) or to
imagine being able to solve by themselves when no one is
around. Concerning the latter, several children (Child 2 in
group 5, several children in group 4 and group 2) seem pretty
confident that they can work it out themselves, whereas es-
pecially Child 3 (group 2) is certain they could not since they
are only at level 7.

4.3 Attitude towards Hedy and camp experience
While the survey focused mostly on participants’ experience
with the camp, in the interviews the children talked elabo-
rately both about the camp and their overall experience of
Hedy. First, concerning the summer camp, ratings (based on
7 questions) ranged from 1.14 to 5 with an average score ofM
= 4.17 (SD = .98). Internal consistency of 7 item subgroup was
good, 𝛼 = .94. A trend was observed with low-SES students
scoring lower (M = 3.71, SD = 1.29) compared to the other
students (M = 4.54, SD = .43).

Second, the interview questions on this topic showed that
most participants are enthusiastic; finding their experience
with programming during the camp fun, interesting, educa-
tional. Three children bring up that they see working with
Hedy as “actual coding" (Child 4, group 4), compared to their
previous experience which “wasn’t really programming",

Hedy: A Technology Acceptance Model ITiCSE 2022, July 8–13, 2022, Dublin, Ireland.

“not really like they do it here” (Child 2, group 5). In group
4 one child also identifies Hedy as a bit of a mix between
Scratch and Python since “it is not so hard with all those
punctuation and all but it is just writing”. There is however
also some criticism and hesitation. First of all, there are spe-
cific children who have an overall less positive attitude. This
includes the case of Child 1 (low-SES student) in group 5,
who’s experience is strongly impacted by the fact that they
find the days of the camp too long. In group 3 as well three
children (all except Child 2) are less positive. For them (two of
whom are low-SES students) it appears a mix of having a dif-
ferent expectation, encountering errors/bugs in the program,
as well as being bothered by the cost of the camp. Second,
overlapping with some of these points, there are themes that
come up within the overall group of children, including those
who are generally positive. Across the groups the children
mention having had different expectations before the camp.
Not all of them can explain why, but six children (in groups 1,
2, 3 and 5) indicate that they would prefer or expected other
output, creating something tangible or a game. Also, for five
children it is a problem that Hedy still has bugs, one child
however states that it was cool to find the bugs, because it
made them feel smarter than those who made the program.

4.4 Perceived Ease of Use
Three items in the survey formed the subgroup "perceived
ease of use". Scores ranged between 1.67 and 4.33, M = 3.47
and SD = .82. Internal consistency was just below acceptable,
𝛼 =.57. Especially the item “I find learning programming
with Hedy easy" appeared to stand out. Low-SES students
(M = 3.0, SD = .76) tended to score lower compared to the
other students (M = 3.90, SD = .65).

In the interviews, 9 children from all groups except group
3 found Hedy to be pretty easy. They stated "...because you
can start working directly, and because the explanations,
examples, and try button are helpful". In group 5 Child 2
indicates: “I think it is really a language that is easy to learn
for children [. . .] if you make a mistake for example, a pretty
big mistake, then Hedy really shows you exactly what the
mistake is”. Some children are more hesitant, expressing
that it is difficult because of the change and increasing dif-
ficulty between levels, or that switching between English
and Dutch is hard. Finally, Child 1 of group 5 generally finds
programming and computers difficult and panic inducing.

4.5 Perceived Usefulness
Two items in the survey formed the subgroup "perceived
usefulness". Scores ranged between 1 and 5, M = 3.64, SD
= 1.52. Internal consistency of the subgroup was good, 𝛼 =
.88. Low-SES students scored lower (M = 3.19, SD = 1.87)
compared to other students (M = 4.00, SD = 1.18).

The interviews showed that most children agree it is use-
ful to learn programming in general (with the exception of

Child 1 in group 5 being most hesitant about this for them-
selves personally) but they have some nuanced ideas on the
usefulness of Hedy. While 8 children are positive here as
well and mention specific benefits (including that it is edu-
cational because of examples given on commands, and that
it can help in between Scratch and Python which are quite
different), a theme can be seen concerning the generalized
usefulness of what is being learned. This is expressed clearly
in group 1 (Child 1 and Child 2) and group 3 (Child 2) as well
as by some other children. The former children seem to have
nuanced opinions about this, expressing both that program-
ming should be open and not so pre-determined and that
it should focus directly on a language you will use later on.
At the background here there is also an idea it is especially
beneficial for (some) children starting with programming.
Child 2 (group 4): “yes it is for the start, but it still bothers
me after that there is nothing you can do with it”.

4.6 Behavioral Intention
Behavioral intention was based on three items. Scores on this
subgroup ranged from 1 to 5, M = 3.31, SD = 1.52. Internal
consistency was good, 𝛼 = .83. Low-SES students tended
to score lower (M = 2.83, SD = 1.74) compared to the other
students (M = 3.68, SD = 1.29).

During the interviews, in each group there were children
who imagined continuing with Hedy later on, though not
everyone was certain or indicated a preference. Some specif-
ically mention that they want to finish the levels, some have
concrete ideas on making something for school or at some
point being able to make games. Most convinced they will
not continue are Child1 (group 1) because they think it is
boring and they prefer Tumble, and Child1 (group 5) who
just finds it really difficult. A later inventory in the Hedy
database showed that five children did in fact later continue.
Three of these students had expressed this during the inter-
view, whereas one (low-SES student) had been hesitant and
the other one was the child who thought Hedy to be boring.

5 Conclusion and Discussion
In this study, we explored the intention of students to use a
gradual programming language Hedy based on TAM, as well
as the patterns for students from under-resourced communi-
ties. 18 students aged 10-12 followed four days of summer
camp on Hedy, after which data were collected through the
TAM survey and group interviews.

Our results show that specific characteristics of gradual
programming appear to positively affect almost all learn-
ers’ evaluation. The children appreciate that it is “easy to
learn” yet at the same time “real programming”. Also, the
specific educational features are brought forward by the chil-
dren themselves as helpful. They find the examples given
on commands educational and place it in between Scratch
and Python which are quite different. Similar findings were

ITiCSE 2022, July 8–13, 2022, Dublin, Ireland. Yeni and van der Meulen

reported in the study [10], where students appreciated the
gradual nature of Hedy, find Hedy easy to learn and espe-
cially like and use the built-in education features such as
example code snippets [10].
Further, there is a difference in motivation between stu-

dents related to code outputs. It can be seen that especially for
some children text-based output is a disadvantage. It could
be that for some, the motivation comes from the text-based
programming (making gradual Hedy very suited, since easy
but real!) but for others it comes from the visual or tangible
outputs, and for the latter group Hedy is less motivational.
This might be related to students’ previous experiences with
visual programming languages or robotics which are popu-
lar for introducing programming to children quickly. Lack
of syntax and outputs of languages make these languages
more attractive for some of them [19]. However, research
also shows that it merely delays syntax problems or even
makes students believe that syntax errors are not that im-
portant causing them to create codes that can not be com-
piled [31]. A related issue is that the majority of students
had difficulties while transferring block-based programming
knowledge (Snap!) to text-based language (Java) [38]. As par-
allel to our findings, some students (especially high school
and university students) are concerned that block-based pro-
gramming languages are not “real” compared to text-based
programming languages [38], although they use a variety of
programming structures and concepts [35]. Another option
might be hybrid programming languages (e.g. hybrid form
of Java) to bridge between block-based and text-based pro-
gramming [27]. Hybrid programming languages could also
be used for students struggling with the text-based approach
or additionally to provide a challenge to younger learners
who are bored with the visual programming approach.

Continuing on this point, there appear to be different “user
profiles", embedded in factors such as previous experience,
expectations specifically of Hedy and of programming in
general. In addition to the children mentioned above for
whom a certain type of output appears most central in their
motivation, within the evaluation of the text-based aspects
there are children who, although generally not very nega-
tive about Hedy, show clear and pretty nuanced hesitations
within their perceived usefulness and behavioral intentions.
It seems they expect and want more in terms of freedom and
challenge of programming and see value in other languages.
On the other hand, there are children for whom Hedy is
in fact already “more real or actual programming". Conse-
quently, Hedy might fit some learners better than others, yet
this could possibly be addressed by paying attention to new
learners’ perceptions and expectations (for instance, empha-
sizing that the end of Hedy really is the beginning of Python).
Expectancy-Value Theory, which posits that students’ moti-
vations, achievements, and choices are determined by their
expectations and their subjective task values related to spe-
cific activities, can explain this situation [39].

Finally, there was a clear indication for the role of socio-
economic status. The quantitative data show a consistent
trend with students from under-resourced communities be-
ing less positive toward Hedy, finding it more difficult and
less useful, and having lower intention to continue. Although
there is some back-up of this in the qualitative data (where
three of the overall clearly most negative kids are low-SES
learners), it also seems the low-SES students are in general
less outspoken in the interviews. Moreover, there are in our
group also low-SES students who have a different profile (for
instance Child 2 in group 5 who is quite positive). Previous
research shows that students from low-SES are expected to
have less access to technology outside of the classroom com-
pared to their higher SES peers [4]. Further, other research
indicates that unequal material access and mental access
(focuses on the psychological and emotional burdens placed
upon those who lack experience with technology, such as
computer anxiety) leads to different usage patterns between
children when using technology [37] [2]. Prior research has
revealed that students’ low-SES had the largest negative di-
rect effect on attitudes toward technology use [4]. Adding
our findings, it would be valuable to attempt to further under-
stand how low-SES students can be motivated and included.
It could be that especially for this group addressing their
perceptions and expectations can be beneficial.
Concluding, using the TAM model we gained insight in

“ease of use” and “usefulness” as central factors that affects
learners’ experience and behavioral intention with the grad-
ual programming languageHedy. Future studies couldwithin
a larger group quantitatively map out the interrelations be-
tween the different factors, and further assess the role of
factors such experience and general perception of program-
ming. The latter could also be explored in order to understand
whether attention for perceptions and expectations can help
in particular to motivate and include low-SES students.

6 Limitations
This study has some limitations. First, for the interviews
there was quite some variance between the groups in the
order in which and how elaborately each topic was discussed,
related to responsiveness of the children and atmosphere
(with especially group 3 being a very active and restless
group). This is however in line with the set-up of a semi-
structured interview as well as with the recommendations
of how to accommodate research with children [13]. Second,
the summer camp was limited to only four days, and it is
estimated that if children had spent more time with Hedy
and gained more knowledge about other levels of Hedy, it
might have influenced their intention to use Hedy.

Hedy: A Technology Acceptance Model ITiCSE 2022, July 8–13, 2022, Dublin, Ireland.

References
[1] Amjad Altadmri and Neil C.C. Brown. 2015. 37 Million Compilations:

Investigating Novice Programming Mistakes in Large-Scale Student
Data. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (Kansas City, Missouri, USA) (SIGCSE ’15). 522–527.
https://doi.org/10.1145/2676723.2677258

[2] Christopher Ball, Kuo-Ting Huang, RV Rikard, and Shelia R Cotten.
2019. The emotional costs of computers: An expectancy-value theory
analysis of predominantly low-socioeconomic status minority stu-
dents’ STEM attitudes. Information, Communication & Society 22, 1
(2019), 105–128.

[3] Theresa Beaubouef and John Mason. 2005. Why the high attrition rate
for computer science students: some thoughts and observations. ACM
SIGCSE Bulletin 37, 2 (2005), 103–106.

[4] Courtney K Blackwell, Alexis R Lauricella, and Ellen Wartella. 2014.
Factors influencing digital technology use in early childhood education.
Computers & Education 77 (2014), 82–90.

[5] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in
psychology. Qualitative research in psychology 3, 2 (2006), 77–101.

[6] Meyrick Chow, David Kurt Herold, Tat-Ming Choo, and Kitty Chan.
2012. Extending the technology acceptance model to explore the inten-
tion to use Second Life for enhancing healthcare education. Computers
& education 59, 4 (2012), 1136–1144.

[7] Fred D Davis. 1986. A technology acceptance model for empirically
testing new end-user information systems: Theory and results. Ph. D.
Dissertation. Massachusetts Institute of Technology.

[8] Fred D Davis. 1989. Perceived usefulness, perceived ease of use, and
user acceptance of information technology. MIS quarterly (1989), 319–
340.

[9] Claes Fornell and David F Larcker. 1981. Evaluating structural equation
models with unobservable variables and measurement error. Journal
of marketing research 18, 1 (1981), 39–50.

[10] Marleen Gilsing and Felienne Hermans. 2021. Gradual Programming in
Hedy: A First User Study. In 2021 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). 1–9. https://doi.org/10.
1109/VL/HCC51201.2021.9576236

[11] Joanna Goode. 2010. Mind the gap: The digital dimension of college
access. The Journal of Higher Education 81, 5 (2010), 583–618.

[12] Lynne Hall, Colette Hume, and Sarah Tazzyman. 2016. Five degrees
of happiness: Effective smiley face likert scales for evaluating with
children. In Proceedings of the the 15th international conference on
interaction design and children. 311–321.

[13] Libby Hanna, Kirsten Risden, and Kirsten Alexander. 1997. Guidelines
for usability testing with children. interactions 4, 5 (1997), 9–14.

[14] Felienne Hermans. 2020. Hedy: A Gradual Language for Programming
Education. In Proceedings of the 2020 ACM Conference on International
Computing Education Research. 259–270.

[15] Richard J Holden and Ben-Tzion Karsh. 2010. The technology accep-
tance model: its past and its future in health care. Journal of biomedical
informatics 43, 1 (2010), 159–172.

[16] Paul Jen-Hwa Hu, Theodore HK Clark, and Will W Ma. 2003. Examin-
ing technology acceptance by school teachers: a longitudinal study.
Information & management 41, 2 (2003), 227–241.

[17] Mohd Ismail, Nor Ngah, and Irfan Umar. 2010. Instructional strategy in
the teaching of computer programming: A need assessment analyses.
The Turkish Online Journal of Educational Technology 9 (04 2010).

[18] William R King and Jun He. 2006. A meta-analysis of the technology
acceptance model. Information & management 43, 6 (2006), 740–755.

[19] Divna Krpan, Saša Mladenović, and Goran Zaharija. 2017. Mediated
transfer from visual to high-level programming language. In 2017 40th
International Convention on Information and Communication Technol-
ogy, Electronics and Microelectronics (MIPRO). IEEE, 800–805.

[20] D Midian Kurland, Roy D Pea, Catherine Clement, and Ronald Mawby.
1986. A study of the development of programming ability and think-
ing skills in high school students. Journal of Educational Computing
Research 2, 4 (1986), 429–458.

[21] Yi-Hsuan Lee, Yi-Chuan Hsieh, and Yen-Hsun Chen. 2013. An in-
vestigation of employees’ use of e-learning systems: applying the
technology acceptance model. Behaviour & Information Technology
32, 2 (2013), 173–189.

[22] Raymond Lister. 2016. Toward a developmental epistemology of com-
puter programming. In Proceedings of the 11th workshop in primary
and secondary computing education. 5–16.

[23] Andrew Luxton-Reilly. 2016. Learning to program is easy. In Pro-
ceedings of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education. 284–289.

[24] Nikola Marangunić and Andrina Granić. 2015. Technology acceptance
model: a literature review from 1986 to 2013. Universal access in the
information society 14, 1 (2015), 81–95.

[25] Raina Mason, Graham Cooper, B Simon, and Barry Wilks. 2015. Using
Cognitive Load Theory to select an Environment for Teaching Mobile
Apps Development.. In ACE. 47–56.

[26] Evelyn Ng and Carl Bereiter. 1991. Three levels of goal orientation in
learning. Journal of the Learning Sciences 1, 3-4 (1991), 243–271.

[27] Mark Noone, Aidan Mooney, and Keith Nolan. 2020. Hybrid Java:
The creation of a hybrid programming environment. Irish Journal of
Technology Enhanced Learning 5, 1 (2020).

[28] Sharon Oviatt. 2006. Human-centered design meets cognitive load
theory: designing interfaces that help people think. In Proceedings of
the 14th ACM international conference on Multimedia. 871–880.

[29] Miranda C Parker, Amber Solomon, Brianna Pritchett, David A Illing-
worth, Lauren E Marguilieux, and Mark Guzdial. 2018. Socioeconomic
status and computer science achievement: Spatial ability as a mediat-
ing variable in a novel model of understanding. In Proceedings of the
2018 ACM Conference on ICER. 97–105.

[30] Michael Quinn Patton. 2014. Qualitative research & evaluation methods:
Integrating theory and practice. Sage publications.

[31] Kris Powers, Stacey Ecott, and Leanne M Hirshfield. 2007. Through
the looking glass: teaching CS0 with Alice. In Proceedings of the 38th
SIGCSE. 213–217.

[32] Robert S Rist. 1989. Schema creation in programming. Cognitive
Science 13, 3 (1989), 389–414.

[33] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning
and teaching programming: A review and discussion. Computer science
education 13, 2 (2003), 137–172.

[34] Robert E Stake. 1994. Case study: Composition and performance.
Bulletin of the Council for Research in Music Education (1994), 31–44.

[35] Leigh Ann Sudol. 2009. Visual Programming Pedagogies and Integrating
Current Visual Programming Language Features. Ph. D. Dissertation.
Robotics Institute.

[36] Timothy Teo. 2011. Factors influencing teachers’ intention to use
technology: Model development and test. Computers & Education 57,
4 (2011), 2432–2440.

[37] Jan Van Dijk and Kenneth Hacker. 2003. The digital divide as a complex
and dynamic phenomenon. The information society 19, 4 (2003), 315–
326.

[38] David Weintrop. 2015. Minding the gap between blocks-based and
text-based programming. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education. 720–720.

[39] Allan Wigfield and Jenna Cambria. 2010. Expectancy-value theory:
Retrospective and prospective. In The decade ahead: Theoretical per-
spectives on motivation and achievement. Emerald Group Publishing
Limited.

[40] Sabiha Yeni and Zeynep Gecu-Parmaksiz. 2016. Pre-Service Special
Education Teachers Acceptance and Use of ICT: A Structural Equation
Model. Journal of Education and Training Studies 4, 12 (2016), 118–125.

https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1109/VL/HCC51201.2021.9576236
https://doi.org/10.1109/VL/HCC51201.2021.9576236

	Abstract
	1 Introduction
	2 Background
	2.1 Cognitive Load and Syntax Issues
	2.2 Gradual Programming Language: Hedy
	2.3 The Technology Acceptance Model
	2.4 The Role of Socio-Economic Status in Computing

	3 Methodology
	3.1 Participants
	3.2 Hedy Lessons
	3.3 Data Collection
	3.4 Data Analyses

	4 Results
	4.1 Prior experience with programming in general
	4.2 Programming Self-Efficacy
	4.3 Attitude towards Hedy and camp experience
	4.4 Perceived Ease of Use
	4.5 Perceived Usefulness
	4.6 Behavioral Intention

	5 Conclusion and Discussion
	6 Limitations
	References

